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ALGEBRAIC DIFFERENTIAL EQUATIONS (¥)

TAirRA HoxDA

Translator’s preface.

This is a translation of the Seminar Notes 38 issued by the De-
partment of Mathematics, University of Tokyo. It is a faithful transla-
tion, except for minor corrections (misprints, a part of the proof of
Theorem 7). As for the references, the original Seminar Note con-
tained a general bibliography, but we have restricted ourselves here
to those references which are most directly related to the present
subject. The translator would like to express his hearty thanks to
Professor Barsotti who gave him an opportunity to present a part
of Tonda’s work in this form, and to the Department of Mathematics,
University of Tokyo, for kindly allowing the translation of this Seminar
Note.

Isao Miyawaki

Preface.

These notes were prepared by Mr. T. Tbukiyama (University of
Tokyo), and based on lectures delivered by the late Professor Taira
Honda (Osaka City University) at the Department of Mathematics,
University of Tokyo, during October 21-24, 1974. It seems that Pro-
tessor Honda did not intend to publish these results at this stage.
But by his sudden death, the development of this work of Honda
was passed to those left behind. So we shall present this work of
Honda in this form. The bibliography was prepared by Ibukiyama
and myself.

Yasutaka Ihara

(*) Comunicazione inviata all'Tstituto Nazionale di Alta Matematica France-
sco Severi.
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0. Introduction.

We shall denote by & a field of characteristic p > 0, and by K
an algebraic number field. For a prime ideal p of K, I?p denotes the
residue field. Throughout this paper we use these symbols.

We shall denote by (1) the following differential equation:

(1) ()Y + @y (2)y" P + . F-a(0)y =0,

where a,(x) € K[x] (0 =<¢=n); instead, (1), will denote the reduc-
tion modulo p of (1). We shall also consider the same equation with
a(r)eklx] (0=<7¢=mn), in which case we shall denote the equation
by (1),. Beginning with the next section, we intend to study some
elementary properties of such differential equations. As motives for
the study of such differential equations we mention the following
problems.

i) Characterize algebraic functions as solutions of differential
equations, by the arithmetical properties of the latter.

Grothendieck’s problem: If, for almost all prime ideals p, (1),
has n solutions in K ,(x) which are independent over K,(x?), are all
solutions of (1) algebraic functions?

In the case n = 1 it can be shown, by using Tchebotarev’s density
theorem, that the answer to this problem is affirmative. When the
equations are of Picard-Fuchs type, Katz also solved this problem
affirmatively. In general, it can be easily shown that the monodromy
group at one point is finite. But this problem has not been solved
globally.

ii) Find and study arithmetically interesting functions which
are solutions of some suitable differential equation.
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ExavpLE. Consider an elliptic curve C: Y= X?*.—— ¢, X — gy, and
let o be a differential of the first kind on €. By taking a local para-
meter 2 at the origin such that X =a2, we have

dx
() = e
Vi— G204 — ¢52°

Define the formal power series F(x,y) by the following process:

Pa) = 1—gurt—g2®

g(l‘) == (P(.I'))#% =1+ za“xnal ,

i) :ﬁmm:zmww,
[¢]

Fa, y) = F-(f(@) -+ F(®) -

Then F(z,y) is a formal model of €. On the other hand, we obtain
' Ji 2 / — .
the following differential equation as a consequence of g(x)*P(xr) =1:

2¢'-P(ax) + g-P'(x) = 0.

1, in order to obtain a formal group F(x, ¥), iF is naturz.il
which is a solution of a differential equation f’f this
= 1 - @ -+ a4 ... of the above differen-
al group F(«,y) in the same way
is p-integral and of finite height

Thus, in genera
to seek a g(x)
type. For a solution g(x) .
tial equation, we define the form
as above. If this formal group F(z, Y) : ' .
for almost all p, can we say that F(x, y) is obtained from an algebraic

group? If so, it is interesting. If not so, then q.uite a pew ze?-fl}nc-
tion might correspond to such an example, and it would also be very

interesting.

1. Linear algebraic differential equations.

For a field k of characteristic p > 0, we denote by ?.'[.1'] ;hfe Irlri;gi
of polynomials of one variable over k, and by 7:[[00] Fhe rlngt 0 b mkw)
power series of one variable over k. Moreover, wWe flferi({ e \IZW r‘.ve
and k((x)) the quotient fields of.k[a'] zu}d L[x]] respective 3 2
shall consider the following ordinary differential equation:

(0=i=n).

1), ag(x)y ™+ ay @)y 4 +a,(@)y=0, a/(x)e k]
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Here, we consider k((x)) as a differential field, with the following natural
derivation:

doe =0 (cek),
dx? = na'-1,

REMARK. The constant field of the differential field k() is k((a»)).
Hence if (1), has a solution in A((x)), multiplication by a suitablecon-
stant yields a solution in kfx]. =

For any differential field, a set of solutions {y, ..., Y of a linear
differential equation is independent over its constant field if and only
if the following Wronskian

1
Y e Ym
. L :
“ (yl? sevy ym) — \yl Y |
N M i
‘ y;m—l) 3/;:1__1) \‘

does not vanish. Hence the dimension of the space of solutions is
not greater than the rank of the differential equation. More precisely,
it W(¥yy ey ¥m) = 0, then y,, ..., ¥, are linearly dependent over the
constant field of the differential field generated over the prime field
by the y’s and their derivatives. Therefore, for a differential field F
and its differential extension field L, if ¥, ..., y. € F are linearly
dependent over the costant field of L, then y, ..., ¥, are also linearly
dependent over the constant field of F. For convenience of the reader,
we shall quote the proof by Kolchin [8].

LEMMA (Kolchin). If the Wronskian of elements ¥y, ..., Yn of an
(ordinary) differential ficld vanishes, then ¥y, ..., Y. are linearly depen-
dent over the constant field.

ProoF. The proof is by induction on m. If m =1, then our
Lemma is obviously true. Assume that it is true when the number
of elements is at most m — 1, and set

A Yia Yia Ym j

‘“i:(_])nzfz .( ..................................... i ,
mn—2) e gy (m=2) gy (m—2) . (m—2) |
1./1 yi"l yi+1 ym |

(i=1,..,m).

If p, =0, we ave reduced to the case of m — 1 elements; hence we
may assume u, 7= 0. Now we can easily show that

n

Sylui=0, o0r<m—1).
i=1

K2
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In fact, if r=n—1 this is obvious from the assumption of the
?

therwise it is a consequence of

Lemma; O
1 /l/’L ym
: — (m—2) ——0
B e Y
! (r
Ly cer Um

m

By difterentiating Sy ui=10 we have
) i=1

it » m . , o
ZZ/({TDM; +_Zl?/i- ;=10
e

i=1

If r<m—2, then we have already shown that

m

Sy ui=0,

i=1

which implies that
m ,
Sylui=0.

=1

On the other hand we have

e the proof of the Lemma we must show that

(’—‘—) —0.
pLe

hence in order to complet

m

3 14 . .,

From >y p; =0 We have
i=1

=y PO

'
zyfir)cui = _—;um’y’m :
1

which is equivalent to

Y1 e Y )(ui ) (yfn )
R = — : . .
( en ey s ™

Y1
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Thus we have by Cramer’s formula:

’

1 Ml

U — — .
Hm

From this we can easily see that ( ! i
§ ha ) = 0, whic
Tront of Temmn, Wil thn) , which comple@gs the

II.I the. case of positive characteristic, the rank of the space of
solutions is generally less than the rank of the differential equation

ExaMPLE. The differential equation y = ¥’ has no solutions in

().

Ile).II\I_»\ 1. Let vy, ..., ymek[[w] be linearly independent solutions
(over k((x”))) of ‘(1)1,. For any sufficiently large natural number N,
there exist solutions zy, ..., 2, € k[x] of (1), such that ,

Y, = 2, mod deg N 1<i< Ny,

(i.e., yi—z; belongs to J,‘k[[x]})

ProoF. An element ¥y :Zoclwi of k[z] is a solution of (1), if and

only if the coefficients ¢,, ¢;, ... satisfy the equations
Ao+ FAie =0 1=0,1,2,..),

where ¢ is a natural number dependent on ay(x), ..., a,(x), and 4;; is
an element of ¥ dependent on a¢(x), ..., a,(x), I, 4. HE:;ICG, if ¢ sxAlcl(’zjes-
sive _coefﬁcients Cis1y -y €y vanish, the polynomial ¢, e,x ... -
c;x' is also a solution of (1),. ' ' o

Let s be a natural number such that ps=1¢ For a solution

¥y :Z(}cixi of (1), we put

P, == .
mn Cmps i cmp.e+1x + + c(m+1)1zs—1xp5717 m= 07 17 27 e

Let {v;, v, ...,v, } ({,<<1 ) i

iy Vigy eoey Ui} {8 << 13 <...<%,) be a basis of the vector
, , or space
isptalalled by the above vectors over k, and, for any natural numbef N
et 2 be a natural number such that ps(2A—<¢,)> N. If we pu’é

v, = b, ... -F b,

i

Algebraic differential equations 175

then yl-——y(l——blw”“—m——...—b,wps(l—"r)) is also a solution of (1),,
and all the coefficients of @Avs, .., @AtDPL N Y, vanish. Hence if we
take the first Aps terms of y; as the polynomial z, this 2 is also a solu-
tion of (1), such that y == mod deg N.

Now, for independent solutions ¥y, ooy Ym 0f (1)p, We take cor-
responding new solutions 2, ..., #m by the above procedure. By
W(Wyy ery Yum) = 0 W have W(z,, ..., 2n) 7 0 for sufficiently large N.
Thus the proof of our lemma is complete.

Next we shall consider a differential equation of rank one as the
simplest case. Techebotarev’s density theorem implies the following:

() Let K be an algebraic number field of finite degree. If almost
all prime ideals of K are of degree one, then K is the rational

number field.

In the case n =1, Grothendieck’s problem is equivalent to (%),
and hence is solved affirmatively.

Proor. Grothendieck’s problem implies Tchebotarev’s density
theorem. Let a« be a generating element of K, i.e., K = Q(a), and
consider the following differential equation:

(2) ay' —oy = 0.

1f almost all prime ideals of K are of degree one, then for each such
prime ideal p there exists an integer o(¥p) e Z such that

o = op) mod p .

Hence the differential equation (2), has a solution a*®, and this
implies that the solution z* of (2) is an algebraic function. Thus o
is a rational number, and K = Q.

Tchebotarev’s density theorem implies Grothendieck’s problem.
Consider the following differential equation:

(3) y'=P@)y,  P@ek@.

I (3)y has a solution in I?p(oc), then (3), has also a solution ¥y, in
K o). It we put

Yo = [T (@ — )

i
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we have

P(x) mod p =§f - 2@_—;07) .

This equation is valid for almost all p’s in K. Hence, in some suit-

able extension field of K we have ~.
B
Px) = —
( ) ; (‘Z‘ - az) ’

and we can easily see that
B: = (a rational integer) mod p .
Hence we see that §,€Q by (%). If we put

y:CH(w_ai)ﬁ‘,

i

this solution of (3) is an algebraic funection.

2, The differential equations of Fuchsian type.

DeriniTION 1. We say that (1), has sufficiently many solutions
if (1), has » independent solutions in k[w]]

DEFINITION 2. The concept « (1), has sufficiently many solutions
in a wealk semse» is defined as follows, by induction on the rank » of
the differential equation (1),.

In the case n = 1, we say that (1), has sufficiently many solutions
in a weak sense if (1), has a non-zero solution.

Next, we assume that this concept is defined for any differential
equation (1), of rank » —1. Then we say that (1), has sufficiently
many solutions in a weak sense, if the following conditions are sat-
isfied:

(i) (1), has a non-zero solution y, € k[z].

(ii) if we take a suitable solution y, of such type and put
¥ = y,u, then the new differential equation with respect to «’
of rank # —1 obtained by the substitution y =y, in (1),,
has sufficiently many solutions in a weak sense.
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REMARE. In the terminology of Katz, this Definition 2 is equi-
valent to saying that the connection associated Wi'th ({),, has n.il-
potent p-curvature. Moreover, in the above condition (ii), «a Sl'llt-
able » can be equivalently replaced by «an arbitrary » (see Appendix).

REMARK. «Sufficiently many solutions in a weak sense» does not
imply «sufficiently many solutions ».

ExaMpLE. 22y —ay +y =0.

We define the regular singular points of the differential equation
1), @@y a@)y" T+t a @)y =0, a(2)ekiz]

by the same method as in the case over C. Namely:

DEFINITION 3. If ay(z) = 0 and (@ — a)e~' divides a,(x) whenever
¢ is the largest integer such that (x — o)e divides a,(x), then we say
that z = o is a regular singular point of (1),. If we then set ® = 1/t,
thus obtaining a differential equation with coefficients in .k[t], we say
that @ = oo is a regular singular point of (1), if t=0 is a regular
singular point of this new differential equation.

Thus ¢ = oo is a regular singular point if and only if deg a;(v) =
deg a,(x) — 1.

DEFINITION 4. We say that (1), is of Fuchsian type if an'd only
if all the roots of the equation a,(»)= 0 and oo are regular singular
points of (1),.

REMARK. (1) is of Fuchsian type if and only if (1), is of Fuch-
sian type for infinitely many prime ideals p.

TasoreEM 1. If (1), has sufficiently many solutions in « weak sense,
then (1), is of Fuchsian type.

Proor. If =1, then (1), has a non-zero polynomial s.olution Y.
Using this solution we have 'y = — a,(@)[a(2)- From this we can
easily prove our Theorem.

Next, we assume our Theorem for any such differential equation
of rank n—1. Let « be a root of ay(x) =0 such‘that (w—q)‘,
but not (@ — )¢+, divides a,(x). 1f we choose ‘fm‘sgltable solution
= (r—a)z with 0 <s<p and (x—a) not dividing 2, and put
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y = 9y,u, then the following differential equation with respect to «’':

Ao(®) Y™ + {(7;) ao()Y1 + al(w)y} w4

e {(f’) ao(@)y + (f__ll ) G @)y + .+ a,-(w)y,} w4 ..

.

~.

n N
. {(n " 1) (@)Y an_l(w)yl}w —0

has suﬁiciel.l’c%y many solutions in a weak sense. Here, we see that
(x — or)ets divides ay(x)y;, but that (z — o&)e**¥! does not. Therefore

(x — o)t divides {(7;) ag(z) Yy + al(az)yl} .
But we can easily see that (z — «)+s-1 divides ay(z)y;. Hence
(x — o)1 divides a,(x) .
By the same method as above, we can show that
(¢ —oa)et divides a,(x) 0=sisn—1).
As for the coefficient a,(x), we see that

ag(z)y?® - ...+ a,(x)y, =0,
and that

(x— a)e+s—n divides a,(z)y{™" 0<ign—1).

From this, we conclude that (x—c)e~" divides a,(z).
We can also show that = oo is a regular si i
a regular singular point of (1
by the same method as above. P b

(?OR.OI:LARY . If (1)?3 has sufficiently many solutions in a weak sense
for infinitely many prime ideals p, then the differential equation (1) is
of Fuchsian type.

Now let # = 0 be a regular singular point of (1). We rewrite (1)
as follows:

(4)  be(@)any 4 by(@)an1yo =V 4 L 4 b(@)y = 0, by(0)F~ 0 .
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If we substitute y = w9(1 =+ chw”) in (4), then there exists a poly-
r=1
nomial f(z) of degree n such that the coefficient of x¢ in (4) vanishes

if and only if f(o) = 0.

DEFINITION 5. We call this equation f(g) = 0 the indicial equa-
tion of (1) at # = 0. And its roots are called the exponents of (1).

THEOREM 2. The exponents of the differential equation (1) are ra-
tional numbers when (1), has sufficiently many solutions in a weak
sense for almost all p.

Proor. This can be proved easily from the next Proposition and
the density theorem.

ProposITION 2.1. If (1), has sufficiently many solutions in a weak
sense, then ils indicial equation has w roots in the prime field (the multi-
plicities being taken into account).

PrOOF. We prove this proposition by induction on n. If # =1,
then (1), has a non-zero solution in k{[m]] by the assumption of the
proposition, and this implies the proposition.

Next, we assume the proposition for any differential equation of
rank n — 1. The indicial equation of (4), is given by

f1(0) = Ba(0) @(o—1) wee (@—m 4 1) 4 oo - D, (0) =0

Now we take a suitable polynomial solution ¥y, = r*z.(%) (zl(())¢ 0)
so that the differential equation obtained by substituting y with y,u
in (4), has sufficiently many solutions in a weak sense. Let fy(0) =0
be the indicial equation of this new differential equation with respect
to u. Then we can easily see that f.(0) = f.(o + e,). Moreover, let
fa(0) = 0 be the indicial equation of the differential equation with
respect to u’. Then all roots of fi(0) = 0 belong to the prime field
by the induetion assumption. And we can easily see that fy(0) =
ofs(0). Hence all the roots of f,(0)=0 also belong to the prime field.

ProposITION 2.2. If (1), has a solution ¥, el?p[:c], then there exists
an exponent ¢ of (1) at & = oo such that

degy, =—omodp .
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Proor. If we put

Y= g+ a & + ... 4™
= wm(l + am—lx_l + e + aow—m) ’

then —m = — degy, is an exponent of (1), at ¥ = co. From this
we can eagily obtain our proposition. ~

~

REMARK. The converse of Theorem 1 is not necessarily true.

ExaMpLE. The equation x2y”"—y =0 is of Fuchsian type, and
its indicial equation is p* — 9 — 1 = 0. If we consider the case p = 2,
then this indicial equation has no solution in the prime field. Hence,
by Theorem 2, this differential equation does not have sufficiently
many solutions in a weak senge.

ProrosiTioN 2.3. Let k be a field of characteristic p > 0. If each
of the following differential equations

(@)  ay(®)y" + a(2)y’ + a,(@)y = 0,

(b)  ay(@)y' + a(z)y = 0,
has a non-zero solution, then equation (a) has sufficiently many solutions
n a weak sense.

Proor. We take a solution w, € k[z] of (a) and a solution
2, € k[x] of (b) which are non-zero. After substituting ¥ =y, u for (a),
we obtain
ao(x)yu” + (2ao(a’).’/£ + a(@)y)u' =0,

w2 @)
u' B ao()
Henee we have
w2y, 2
W s
w Y &
This equation has a solution #'= z,/y?. This completes the proof of
our proposition.
COROLLARY 1. If (1), satisfies the following conditions
W =2,
Fuchsian type,
All regular singular points belong to G.F(p),
ao(:r), a,(r) € GF(P)[-’?L
(1), has a non-zero solution,

then (1), has sufficiently many solutions in a weak sense.
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Proo¥. We may put ayz) = [[ (#—a)? «€G@F(p), o7«
(i # §). Then we have i=1

s .
al({[) — 2 ft " ﬂLEGF(p) .
Let ¢, € Z be an integer such that e, mod p = ;. Then the equation

ay(@)y’ -+ ay(@)y =0

$

has a non-zero solution ¥y = H (# — a;). Hence (1), has sufficiently
1=1
many solutions in a weak sense by Proposition 2.3.

COROLLARY 2. Gauss’ differential equation
a@—1)y" + {(«a+p+ 1);77—)’}:[/’—!— afy =0, a, By y€GF(p),

has sufficiently many solutions in a weak sense.

PROOF. It is well-known that this equation has a solution. More-
over, we can easily check that the other conditions of Corollary 1
are satisfied.

3. Application to number theory.
Let p=5 be an odd prime number. We define the number &£ = -1

by e¢p =1 mod 4. Let y be the non-trivial character of GF(p)* of
order 2 (i.e., 7 is the quadratic residue symbol). Then we put

8,.={acGF(p)*|yla) =1, y(1—a) = 1},
S,_= {aEGF(p)Xlx(a) =1, y1—a)= __1}’
and we also define S_, and S__ in a similar manner. Moreover, put

F__(@)=[](@—a),

Q€S-

F_(2)=]](@—a).

acsS_4
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Then:

THEOREM 3. If ¢ =1, then

P () = (— 1o (:) Lk 1P

p i=0 7’!(%)z
P (2) = (—1)evr (5) O3 @D .
2\p] & iY3)

If e =—1, then

F__(a) = (—1)@+d/s (2)
4

S L]
mi

(4 !

. 2\ 021 (3)(2):
¥ () = (—1)»tvia— i)
_ (@) = (— 1) ( ) o 4B,

i=0

p

Here, the symbol (0); is defined as follows:

0);,=6(0+1)y...(0+i—1) ifi=1.
METHOD OF PROOF. We shall consider the differential equation

J o

D L " _1 '
) x(r—1)y +(T ) 6=

2

This equation has solutions \/ /% - +/x— 1 in characteristic zero. For
any prime p > 3, equation (5), has two polynomial solutions as
follows. Let F, be the first 1 -~ (p —¢)/2 terms of Gauss’ hyper-
geometric function F(L, —%, %; @), and let F, be the first 14
(p —2 + &)/2 terms of F(}, 1, 3; #). Then Fy(x) and g2, (x) are
linearly independent solutions of (5),. We can easily show the above
by considering the fundamental solutions in characteristic zero.
Noting that

degF__—degF, and degF_,=degF,,

if we show that E__(w) and z>tV2F__ (x) satisfy the equation (5),,
then we can obtain Theorem 3 by comparing the coefficients of the
terms of highest degree.

To show that y = F__(x) satisfy (5),, we may compute

yr y" ,y/ ’ y/ 5
—_— and — = = A I
y y (y) i (?/)
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But we have

(¥*)
2y

(y®)'=2yy’ and then ?:/— =

On the other hand, we can show that

{(1 — )2 1}{1 + m(p—l)/a}

2Dz | (1 — g)@- D/

const X F2_(x) =

Thus we can avoid irrational calculations.
As for the coefficient of the term of highest degree, as an example
we give the following congruences in the case ¢ = 1 and m = (p —1)/4:

D= B {15 (@m—3)H{(=1)3--(4m —5)} 2"
m!E)m m!1-3-..-(2m—1) 24m
1:3-5-0s(p—4) (=™ _

—{2-4~...-2m}{(p-—1)-(p—3)-...-(2m—{—2)}. PED
9\1 1:3-5+..o(p—2) 2\1
— /el Yy -.- = (— (p—D/a | —)—
= (p)z pa6 .1 (p)zm"dp’
2
where we used the fact 22m=20-/2= (5) mod p.

The facts that equation (5) has the solution Az ++/2—1 and
that equation (5), has independent solutions F__(x) and F_, (x) are
more directly related to each other in the following way. If we put

u=A/+/Z++/2—1, then u and »~' are fundamental solutions of (5)-
And we can show that

ur—e + u——(p—s) and w—lz‘(ulﬂ‘e + u—(?‘i'b‘))

are elements of Z[z]. If we note that %* mod p is an element of the
constant field, then we see that

Yr—e + y—r—e mod P and w—%(uz’ﬁ’s + u-‘(}H’E)) mod P

are fundamental solutions of (5),.
But we can easily show that

e, F__(v)=w*+ u—-9 mod p ,

o F_, (v) = o Hurte+ w~»+o) mod p ,
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where ¢, and ¢, are elements of F, (p s« 2). Therefore F__(r) and
x@tV2F | (x) are fundamental solutions of (5),.

As for F (x) and F__(x), there exist similar expressions of them
by u«, but it seems that the polynomial expansions of them are not
so simple as those described in Theorem 3.

.

~

4. Introduction of the logarithmic functions (characteristic p > 0).

Let £ be a transcendental element over k(). We shall turn k((z))(¢)
into a differential extension field by setting &' =1/x.

k((x?))(£?) is the comstant field of k((@))(&).

Proor. Take an element g/f of k(@))(£) with f, g e k((z))[£]. We
may assume that f and g are prime to each other as polynomials with
respect to &.

Now we suppose (g/f)’= 0, hence we have fg'=f'g. From this
we derive that f divides f'. But we see that deg f (= the degree of f
with respect to &) = deg f’. This shows that

f'=cf with ¢ek((z)) (¢ may be zero) .
If we display fek((@))[£] as follows
f = bo(@) + by(@)& + ... + ba(@)&", bix) ek((z)), bu()#0,
we have

by ()

i = (it +- bale)

) + (b{(w) n -—) Eqt (b;_l(:v) n ”"("”)) =

& x

x
+ ba(@)€".

Therefore ¢ must be equal to b,(%)/b,(x). Set ¢,(x) = b,(x)/b.(z). By
equating the coefficients of /' — (b,(x)/b.)f to zero, we obtain

cl’,(x)_i_(i__*_,l_)f‘il@:o, 0<ig<n—1),
e, () =1.

In particular, ¢,(x) belongs to k((a)).
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Now we suppose that ¢€:..(®) € k((x?)), and consider the equation

' (i 4 1) €ia(@)
@) = — - T

‘Bach non-zero term on the right hand side is of type :cl.""—l x,vith melZ.
If ¢+ 1= 0 mod p, then ¢;,1(x) must be zero, oth-er'\.\nse ¢;(@) cannot
have a primitive function ¢;(z) in L((x)) Moreover if ¢ 41 ——_:'0 moq P,
then we have c;(x) = 0, i.e. ¢, () € k{(27)). Thus we have by induction

ci(x) =0, if t£0 modp,
{ ¢.(x) € k((x?)) if i=0 modp .

Therefore we have

f1b.(@) € k((@7))[&7]-

Let d.(z) be the coefficient of the highest term of g. Then, by the
same method as above, we can show that

g/d(x) € k{(z))[E7] .

On the other hand, we see that

dn N\ {ba
f(2eg) = o (521)
(from fg'=f'g). This implies that

1 bn
(23) =0 ie -tek(a).
m d'”l
Therefore we have
g 9ldn du_, )
g 20 e h{(am))(87) -
i~ i 5
Conversely, it is trivially true that any element of k((a))(&”) is a
constant. This completes the proof.
We put R = k[, £) and K = k[x] (€]

LEMMA 4.1. If the degree of an element of R (re.sp.‘ E) with re-
spect to & is less than or equal to p— 2, then u has a primitive function

in R (resp. R).
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Proor. We shall prove this lemma by induction on the degree

of .
If = f(x)ek[x], then we can write it as follows:

fio) = hia) + 22,

where f,(x) has no term of degree py — 1. Thus we have

[1(@) dw = [1.(a) dw+- 1@ € k=]

Hence, if the degree of u is zero our lemma is proved.
Next we consider the case u = f&7, fe k[[x]] Then we have

fff" de =§&"|fdr — 'nf (%j ff dw) dr .

If we put _ff dx = xf,(x) + ¢, we see that

n—1
dx ,
x

J‘EH (xfo(2) 4 ¢) do =f§"—1f2(w) dw cfg

x
n—1
ff dx:—1~§".
n

X

This shows that the proof of our lemma in the present case is reduced
to the case of degree » — 1. Therefore the proof of our lemma is com-
pleted by induction.

ProprosITION 4.1. Assume n =< p. If equation (1), has sufficiently
many solutions in a weak sense, then (1), has sufficiently many solu-
tions in R.

ProOF. We prove this proposition by induction on .

If n = 1 the proposition is obviously true.

Next, we suppose that the proposition is true for equations (1),
of ranks less than n. If we take a suitable solution ¥,(s= 0) € k[z] and
put ¥ = y,u, the new differential equation of rank » — 1 with respect
to «' has sufficiently many solutions in a weak sense. This equa-
tion has independent solutions v,, ..., v, by the induction assumption.
Moreover, we may assume inductively that the degrees of these
solutions are less than or equal to n —2. Therefore they have prim-
itive functions u,, ..., w, in R. Then y,, ¥, %s, ..., ¥ 4, are solutions
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of (1),. If we suppose
Yy + Y s+ oo + e =0, e, e k[or, &),

then we see that

Cols T+ oon T Cu¥n = 0.
Therefore we have
e=..—¢c,=0 and ¢=0.

Thus we have completed the proof of our proposition.

EXAMPLE.

oz —1)y 4 @z —1)y' + 1y =0.
In characteristic zero, the space of the solutions of this equation is
spanned by

Wi(x) 5 Wi(x) log @ + We(x),

where we define W,(x) and W,(x) by

o0 _1\2
Wl(o:)=1+§1( 2) an,

n

e (—f. 1,1 1\,
“Yz(x):ziz( ") 1—;+§—~.. o X" .
n=1 n ~

W,(x) is not p-integral for all primes p. But in characteristic p > 2,
2

the functions

— A 2 1
(0—1)/2 [ 1\2 -2 1 _l 1——...————)37”
Yy =1+ z (nz) xt, yz:4n§1 n 1 2+3 o
Ca=1

are well-defined, and the two functions y, and ¥, & -+ ¥, are solutions
of this equation.

ProposITION 4.2. If equation (1), has sufficiently many solutions
in R, it also has sufficiently many solutions in a weak sense.

PrOOF. We also prove this proposition by induction. Case n = 1:
let an element

pobr 4 bt o e, where yiek[e] and 320,
0
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be a solution of the equation a,(x)y’ -+ a,(x)y = 0. Then we have

(a‘o(m)yé + ay(2)yo) "+ (ao(w) (T%’g + 3/1) + (11(1’)?/1) =14 . =0.

As the element & is transcender
s tran; ntal over k((x)), we get a.x)y,
j— Q 1 : X
%I(lw) yfo =0. Thl;s there exists a non-trivial solutionb Yo :n\);/[‘fw_]ﬁ
erefore we get a non-zero polynomial soluti ich i i ,
Dromesttion oy oo y olution, which implies the
Next, we suppose the proposition to be true for equations of rank
n — 1, and find a polynomial solution y, by the same method as above
Let g, ..., Y» e other solutions of (1), in B such that y y are
linearly 1nflepen(.1ent over the constant field. If we put yl ’=g/’ un 1‘;‘he
new e/quatlon with respect to #' is of rank # — 1 and has solluzciont:
(#e/41)'y -y Un/y1)'. Therefore y(y./1,)', ..., ¥3(y./y,) are also solutioné

of that equation. Assume

YW /Y) o+ e () =0,

where ¢; belongs to the constant field.
After integration we obtain

. o ey (o) + oo CaY1(Yn/h) = 0,
ie.

Y+ GYTY o yly, =0 ’
hence ¢, = ¢, = ... = ¢, == 0. Thi
! 2 = . 2= 0. s shows that the new equation with
.le;pec"c to ' has .suﬁ‘ielently many solutions in B. Hence, by the
Induetion assumption, that equation and also (1), has sufficiently

many solutions in a weak i
. . sense. This completes
Drapsient P the proof of our

Summing up the above results we have the following theorem:

THEOREM 4. If n < p the following three conditions are equivalent :
(i) (1), has sufficiently many solutions in a weak sense.
(ii) (1), has sufficiently many solutions in R.

(iii) (1), has sufficiently many solutions in R,

(i) «—— (iii)
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COROLLARY. If (1), satisfies one of the conditions of Theorem 4,

then (1), has n independent solutions, of degree n — 1 with respect to &,

wn R.

5. Differential equations having sufficiently many solutions.

Assume that equation (1), has n independent

PROPOSITION 5.1.
vy Yu are independent solutions for which

solutions in k[z]; if v, .
n
S degy; is minimal, the set {deg y, mod pji_; is uniquely determined

=1
y (1), independently of the choice of {y.}. Morcover, the elements deg y;

are mutually incongruent modulo p.

Proor. Set g; = degy,;. If we assume for instance
G—Gg.=vw>0,
there exists a constant ¢ such that
deg (y, — cx"’y,) < degy, .
Hence, if we put &, =y, — 6x"™¥,, also

s Yoy wees Y

are independent solutions of (1),. But this contradicts the faet that

n
> g, is minimal. Therefore deg y,; are mutually incongruent modulo p.

i=1
Let 01y <.y 04 € GF
know that each — g, is congruent modulo p to some

mod p are distinct, we conclude that

(p) be the exponents of (1), at oo. We already
o0;. Since the g,

{Qn sy 971} = {—— g: mod p};‘ll .

COROLLARY. If the equation (1), has sufficiently many solutions n
k[x], then n = p.
Let (1) be a differential equation over Kx]. If
then n exponents of (1),
on is satisfied
) are n distinet

PROPOSITION 5.2.
(1), has sufficiently many solutions in K>,
are incongruent modulo p to each other. If the above conditi
for almost all prime ideals p, then the exponments of (1

rational numbers.
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Proor. Easy.

ProprosITioN 5.3. We suppose that (1), has sufficiently many solu-
»

tions. Let y,, ..., Y, be independent solutions of (1), such that > degy,
i=1

is minimal. Then the set of the degrees of the y,; is uniquely determined.
AN

ProoF. As the set {degy, mod p} is uniquely determined and all

its elements are distinet, for each o, we can find a solution y, such

[y

that p, =—degy, mod p and that deg ¥, is minimal. If these solu-
n
tions y,, ..., ¥, are independent, then it is obvious that > degy, is
minimal. We put i=1
01'.1/1'%_ "-‘i_cnyn:O y Ciek[xp] .

Let ¢ be the set of the non-vanishing ¢;’s, and if C is not empty let
deg ¢,y, be the largest dege,y; for ¢; € C; then the deg ¢y, mod p for
¢, € C are all distinet. But the coefficient of the highest term of ¢, ¥,
is zero, and this is a contradiction. Hence we have

= ..=¢,=0,
Thus we have completed the proof of our proposition.

LEMMA 5.4, Let ¥y, ..., Yo be clements of K[x]. If y, modyp, ...
coes Yo mod p are independent over K ((xv)) for almost all prime ideals p,
then ¥y, ..., ¥, are independent over K.

Proor. We can easily prove this lemma by using the Wronskian.

PRrROPOSITION. If equation (1) has n independent algebraic solutions,
then (1), has n independent polynomial solutions for almost all p.

Proor. Easy.

Ly 5.5. Let Ay = b be a system of linear equations in K. If
the linear system Ay =b mod p has a solution for infinitely many prime
tdeals p, then Ay = b has a solution.

Proor. It is trivial.

THEOREM 5. For a given differential equation (1), if (1), has suffi-
ciently many solutions in K [x] for almost all prime ideals p, then its
local monodromy group (of a neighborhood of one poinmt) is finite and
cyclic (Katz).
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ProOF. We may suppose that z = 0 is a regular sing}ﬂar point.
By the assumption all the exponents of (1) are distinet ratxona} num-
bers. Taking one of them we put ¢ = ¢:. We may show that there
exists a solution of type x9(1 + > cvw”) in characteristic zero. If there

y=1

exist such solutions for all exponents, then it is obvious that they are
linearly independent over C and that the local monodromy group 18

m

exp [2»7:17@1] 0

0 exp [2710,]

Now let f(x) = 0 be the indicial equation of (1). By compari‘ng
the coefficient of z¢**, ¢, can be found by the following recursive
equation

flo+v)e= Apy i€yt - + Avpi O+ B, ,

where A and B are determined by (1) and its suffix independently

of ¢. .
Ivf 0; — 0; is a natural integer, there is an obstruction to the deter-

i i p —p,;); if we take a
minaton of ¢, _,.. Fix an integer N = max (¢, 0;); if

formal series ¥ :x@(l + zcyx”) which satisfies the equation
v=1

(%) (left hand side of (1)) = 0 mod deg (¢ + N+ 1),

all e (v > N) are automatically determingd by the abovg }lie(fursweta}
equation. Equation () is equivalent to a linear system Vﬂ.flt ?gspfe
t0 €y, --vy Oy, and We denote this system l?y (x%). For a prime 1 (razzi P
such that (1), has sufficiently many solutions, we take 2 nonéne]igdfvle
integer ¢ such that g =¢ mod p. Then (1), has a solution o the fol-

lowing form:
w@+2aﬂempy
v=1
N .
Hence .23“(1 -+ 25,,37”) ig a solution of the equation
r=1

(#)p (ledt hand side of (1),) = 0 mod deg (¢ + N +1).

Hence &, ...y Cy 18 @ solution of (s%),. Therefore (%%)p has a solution
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for infinitely many prime ideals p. By Lemma 5.5 the linear sys-
tem (x%) has a solution. Hence (k) also has a solution, and this shows

that (1) has a solution of the form a:(’(l -+ zcyw”). It can be easily

v=1

verified that this formal solution is convergent.

THEOREM 6. For a given differential equation (1) assume\thgt (1)

has sufficiently many solutions for almost all p’s, and that (1), has solu-
n

tions yP, ..., yP such that > deg y'® is bounded for infinitely many p’s.
=1
Then all the solutions of (1) are polynomials.

ProOF. As the exponents of (1) at co are rational numbers, we
display them as follows:

L mez, e =)

Let S be the set of primes p which satisfy the latter assumption of
the theorem. Moreover, for an element p of S, let p be the rational
prime such that p divides p. Then we have

. = deg ¥y mod p , for some 1<j<n.

i

Hence there exists a non-negative integer A, such that

0= degy?® = AP+ =

If p, < 0, then it is trivial that 2,=1. And if v, > 1, then it is also
trivial that 1,7 0. Thus we see that 1,=1 in these cases. But
Ap = 1 implies that deg ' is not bounded if p — co, which is a con-
tradiction. Therefore have u,=0 and », =1.

For any element p of S set degy(® = g{¥; then we have 0 < g{*),
p; < p for a sufficiently large prime p. Hence we may suppose that

g = u;, (z=1,..,n).
Now we can verify that (1) has a polynomial solution of degree u,

if (1), has a polynomial solution of degree u for infinitely many prime
ideals p.
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In fact, set

y=ua*+ x* 4 ... + ¢, in (1).

Then we have a linear system with respect to ¢, ..., ¢y, which has
a solution modulo p for infinitely many prime ideals p. Therefore
this linear system has a solution in K by Lemma 5.5, which shows
that (1) has a polynomial solution of degree u. Thus we have com-
pleted the proof of the theorem.

On the degree of solutions (characteristic p>0).

Hereafter, we suppose that (1), satisfies the following conditions

(@o(@)y .ny aulx)) =1 and Fuchsian type,
deg ao(x) =1+ N, ostZp—1.

We put
n n—1

D = a4(@) o - ay(@) ey + e () -

Since (1), is a Fuchsian type differential equation, we have
dega,(x) <t+n—i.

Hence, if we take an element y of k[x], we have
deg Dy = degy =1.

DEFINITION OF SYMBOL: For a polynomial # = ¢, + ¢,& + ... +
¢,,x7* of k[z] we denote by % the polynomial

U = Cp @} Cpy @ Cpy TP7L.
LEMMA 5.6. Let y be a polynomial of the following form:
Y = U+ U®” - oo - U T 4.y
where u;, y € k[x] and degu,=p—1.
If y is a solution of (1), and W, is zero for some m =0, the poly-

nomial
Yy = Ug 4 Uy ® + oo = Un 2™

is also a solution of (1),.
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PROOF. We put y=y, + a?®@+Dz for azsuitable polynomial # of k{z].

Then we have

D:,/I + 2P +1) Dy - ()
and

deg Dy, < degy,-+t=pm—+p—t—1-+t<pm+1).
AN

~,

Hence Dy, = 0, which shows that ¥, is a solution of (1)

D

ExXAMPLE. In the case t = 0 in (1),, we can evaluate the minimal
value of ) degy,: For each exponent 0:, there exists a solution y,

i

such that degy, = o, modp. Relations degu, < P—1 and t=0
entail %, = 0. Hence we can find a solution y, such that 0 < degy, <
p —1. Therefore we have

1
min 3 degy, <p—1+4 (p—2) ... + (p—n)gnp—nﬁzi‘) .

In general we have the following theorem.

THEOREM 7.

(4) If p <, then (1), does not have n independent solutions.

(B) If p = n, then (1), has n indipendent solutions if and only
if it is of the following type:

(1), YO =0,

In this case, the solutions 1, x, ..., v are independent solutions of (1),

(C) In cases n<<p and 0 <t < p —1, assume that (1), has inde-
pendent polynomial solutions. For any set of n independent solutions

n
Yy -y Yu S€t degy, = g,. Then the minimal value g = min > g sat-
isfies the inequality i=1

n{n + 1) ( n(n—l—l))

t+%2-»—§y§(n+t)p— M+

COROLLARY. If p=mn-1, then g=1-+ n(n -+ 1)/2.

ProOOF OF THEOREM 7. (4) is already contained in the Corollary
of Proposition 5.1. Let us prove (B). In this case the indicial equa-
tion of (1), at # = 0 is of degree p and has p distinet roots. Hence
the indicial equation must be o(p — 1) ... (0 —p -+ 1)= 0. Therefore
the differential equation must be y™ = 0. Next we shall prove sta-
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tement (C). Let

Yi= Ui+ Wig @ + U@ + ... l=i=mn)

be independent polynomial solutions of (1), such that > deg y; attains

i=1
the minimal value. We already know that deg y; mod p are diStII_ICt.
Changing the suffixes, if necessary, we may suppose that .S :d {:t};oé
g0 -y Ws,op 18 a set of linearly independent vectors over Lk and tha
t-h’e other %, are dependent on these vectors. Moreover we may
take S so that s, is minimal. Then we shall show that we may
assume ;o= 0, ¥;o= %o for 1 =3, + 1.
For an element %, (1= s, + 1) we have

3o
Wi = z CiUj,oy c;ek.
i=1
Hence we have
So S0 0
Yi— 2 6Y;i = (ui,o_ zci“i,o) +xre,
i=1 i=1

So So —
Wio— D Cilhjo = Uip— z €t =0.
i=1 i=1

Here, if we remember that the elements deg y; mod p are all distinet,
we conclude that

deg (yi—;Eolcj yf) = deg ¥

for a suitable integer % in the set {1, 2, ..., So, i}. Hence we have

if 2,50,
if 2,=0.

p + degz;
degyp = deg (ui,o"“ Z Cju'j’o)
3

If 2; 0, we have degy:> dege; and degy, = degz; mod p. As #z;
is also a solution of (1),, we can show that the vectors

{W1y ooy Yrm1y iy Yrras ooy Yu)

are independent solutions of (1), by the same _metho_d use_d.in ’r;he
proof of Proposition 5.3. But this fact contradicts with minimality
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of > degy,. Therefore we see that z; =0 and that
i

So So
Yi— Z CiY; = U0 — z CiUjo »
j=1 i=1

If it is not the case that ¥, = u,, with %,, = 0, then we easily see
that N

degy,=p—t.

On the other hand, we have

deg (uz-,o—zo c,—um) <p-—t=degy,< deg (yi — 20 c,»y,-) .
i=1

i=1
But this is a contradiction. Thus we have shown that

Yi= Ui, Ui =0
for 1 =s, -+ 1.

Under the above assumption we take a new set S, = {1, %,
wooy Wyqp 80 that all the elements of S, U 8, are linearly independent
over & and that the other %,,, arc linearly dependent on these vec-
tors. Moreover, we may also take {y;} so that s, is minimal. Then
we can show that #,,= 0 and that y,= u,,+ u,;,2? for any ¢=s, - 1.
We have already shown that y,= u,, for any i=s,- 1. Hence we
have s, <s,. If it is not the case that %,; =0 and ¥, = %, u;,2°
for some s, --1=%¢=<s,, we can eagily see that degy,=p -+ (p—1).
Moreover we have, for such <,

8y 8p
(1) {2) A e 2
yi“ECj yf—ch Y50 = 050+ 0, 27 - 272,
i=1 i=1
degv;,, degv,, =p—1, via=10,

for suitable constants ¢; of k. By the same method we can show
that 2, must be zero. Therefore we have

Sy So
(1) (2) I
Yi— zcj Yi— 2 6Py =00+ v, @7 .

i=1 i=1
But we have

84 So
deg (v F via?) <p+ (p—1) = degy,; = deg (?/i__ Saly,— 02-2).%) ,
’ ji=1

i=1

which is a contradiction.
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By the above procedure we take the sets S;, 8., ..., S, with
Si = {771,1'7 eevy @sj,i} )

and put 8§ = 8, U ...U §,. Thus we have a set of independent solu-
tions ¥, ..., ¥ of the following type

Y= téi,o+lti,1mp+ e U AT (l=isn),
uz‘,o7£0, /“‘f,n#o’

Wiy Winy =09 Uiy, € S, ui,"zio )

Moreover, if we note that the elements deg y; are mutually incongruent
modulo p, wWe may assume degu.,, <p—i—t. An_d we have K -+ ..
w7, =<t by 8=t Hence we have the following inequality

z : +1)
Sdegy,i=2((p—i—1+ 7iP) :n(p—t)—@(n—gf +tp
i=1 4=1

n(n+1)
:(n—i—t)p—(ffzt+ 9 ) .

To prove the other inequality we shall use the Wronskian. For
n solutions ¥, ..., ¥» of (1), we put

Y1 Yn
A@) = 0 Yn
gy g

Let ¢,(2), ..., ¢.(x) be the minors of degree n of A(z). Then we have

colw)y — e (@)Y 4 L (@)Y= 0 (1=£i=n),
since
L
4@ ¥ =0.
L

In particular, ¢(«) is the Wronskian W(¥,, ..., ¥n) Of Y1y ooy Yu- We put

(C’o(x)9 ) cn(w)) = d(x) .
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Now we consider the linear equation (X, ... X,)4(x)=0. As the rank
of A(x) is equal to », the dimension of the space of solutions is one.

But (qn(x), veey (1)) and (== e,(2), ..., ¢(x)) are solutions of this linear
equation. Hence we have

¢o()
ag(r) =
o) d(x) .
\.\ .
Therefore we have the following inequality: |
t 4+ n = degay(z) < deg W(y,, ..., ¥,)
#(n—1)

ie.,

gz M)
= i 5 T .

=

Thus we have completed the proof of the theorem.

E}.(AMPLE. In the case p =5, n = 2 and ¢ = 1, the differential
equation ,

(4 1)y + 22y +ay =0

has independent solutions

o
Yo =" — .

This pair of solutions attains the minimal value of g =d
o g =degy, + degy,

g=10=(1+2)p— (2t +3).

Appendix. Correspondences of terminologies with Katz’s theory.

In order to clarify the correspondences of terminologies between
our theory and Katz's theory, we shall give a brief explanation of
Katz's paper: Nilpotent connections and the monodromy theorem; appli-
cations of a result of Twrrittin; just as much as necessary for t};is pur-
pose. For more detailed results the reader should consult the original
paper.
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Tet k be a field of characteristic p > 0 and let k{z] be the ring
of polynomials of one variable over k. For a fixed f = f(») € k[z],
we put 8 = Spec k[x];. Regarding k[z]; as a global section over 8,
we obtain a free sheaf M over S naturally. Moreover, we denote by
Der (S/k) the sheaf of derivations and by End, (M) the sheaf of
k-linear endomorphisms of M.

DEFINITION. Let V: Der (S/k) — End, (M) be an Og-linear map-
ping. We call this V a k-conmection of M provided it satisfies the
equation

V(D)(fe) = D(f)e + f V(D)e) ,

for arbitrary sections D, f and e of, respectively, Der (8/k), 8 and M,
over a suitable open set of S.
For any section D of Der (S/k), D* is also a derivation. Hence

V(D») can be defined.

DEFINITION. We define the mapping yy: Der (8/k) — End, (M) by
po(D) = (VD)) — V(D7) .

We call this  the p-curvature of V.
V(D) is a k-linear mapping. Moreover one can show that yg(D)

is, in fact, an Og-linear mapping.

DEFINITION. We say that v is nilpotent if there exists a natural
number m such that v satisfies the following equation for all sections
D,, ..., D, of Der (8/k):

"/)v(Dl) "/’v(Dm) =0.

The dimension of the space of derivations is one. Hence v is nil-
potent if and only if yy(D) is nilpotent. In other words, select a basis

e of M, and set
w(D)e = Be

for a suitable matrix B. Then (D) is nilpotent if and only if B is
a nilpotent matrix.

It can be shown that y is p-semilinear, i.e., that wo(8D) =
Sry(D). So, if pyld/dw) is nilpotent, then v, is nilpotent.

Next, we consider the relations with the differential equations.

We put M= Hom, (M, Oy) and denote by {, > an inner product
of M and M. Taking sections D, m and m of Der (S/k), M and M




200 Taira Honda

~

respectively, over a suitable open set, we define a k-connection V
of M by the following equation:

(%) V(D) (m), mY + (m, V(D)) = D(<m, ) .

Then we can easily see that V is k-linear and that V is a connection
- v ~
of M. We call this V the dual connection of V. From ~

Cypg(DYmy iy + {my yy(D) 1)y =0

we can see that yy is nilpotent if and only if so is yy.
Now, for a basis e = (e, ..., ¢, ;> of I'(M, 8) = k[x]}, we put
V(d/dx)e = Ae, where A is a matrix of M,(k[«],). Let

¢ = <é0’ ey én_1>

be the dual basis of e. We next ask when an element
n—1
>fiei, where f,€ k[x],,
i=0

is annihilated by ﬁ(d/dw). After substituting the m of (%) with the
above element, we can see that this happens when the following equa-
tion is satisfied:

fs fo~

Do )=af:

foa fas

We call the above equation the differential equation corresponding
to V. Of course, this differential equation depends on the choice of
basis. Reciprocally, if a system of differential equations is given, we
can construct a connection from it. In particular, if we take a basis
of type

V(ggc)ei =€, Osizsn—2,
d n—1
v (‘ﬁ) €n_1 :-zodiei y a; € klx]; ’
is

then V corresponds to the following ordinary differential equation:

{ﬂ':fzurl’ 0sisn—2,
g fr Y — o —dy_1fo=0.
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And the roots of the polynomial f, which is used to cons_truet t'he
gradient ring k[z]y, correspond to singular points of the differential

equation.

ProposITION. The differential equation

1), @@ y® + a@yed 4+ a@y=0,  afo)ekl]
has sufficiently many solutions in a weak sense if and only if the con-
nection
0 TP 0 - - 0
0 0 1 0
d
f):-
“ 0 1
—— a’l/a/o . - . - J— a"/ao

has a nilpotent p-curvature.

Proor. We suppose that yg is nilpotent. Then yy is also nilpotent.
And we have yy(d/de) = (‘@(d/dw))” by (d/dz)?= 0. Hence if we put

e rd\\'y =0
(Fa) -} =0

then V, is a k-linear vector space. Moreover, we have V,7 0 from
the nilpotency of (V(d/dx))>. Thus we have

{0} V,0V,40...0V,= {0} .
Therefore, there exists a natural number ¢ such that
Via# {0} s Vi= {O} :

Let & be a non-zero element of V,;. Then we have

~ i+1V [ d i -
() (s

Hence, if we put & = (V(d/dx))ié, we have

v fd\
i)
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Therefore there exists a non-trivial solution. We denote this solution

by ¥, € k[x]. We next put y = Y, u. Then we have

Y
’ Y1 Y 0 u
' )=l 20 wu v ~
. . . -
y(n—l) ' /”:(n—l)

: Ai’/l

We denote this matrix by B. Let ¢ be a basis of M such that

d
V(L) e — 4o
(da:) ¢=de,

where 4 is the matrix given in the statement, and set Be, = e

Then we have
d
\Y i Be, = 4de = ABe, .

On the other hand we have

d
\Y 7 Be,=B’e, + BVe,
by the definition of connection. Hence we have
Ve, = B-(AB — B')e, ,

and t.h.is gives the differential equation with respect to (u, u’
As y, is a solution of (1),, we see that o

0 4 4
AB——B’z(S N i Y1
0 ’

0 *
B~YAB—B') ={: qu) .
0

ey YD),

i.e. that

This matrix C,_, gives a new connection which corresponds to the

T
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differential equation with respect to «'. We can easily see that this
connection is also nilpotent by the nilpotency of py.

Thus the discussion is reduced to the case m == 1 by induction.
But we have already proved the case n = 1.

Reciprocally, if (1), has sufficiently many solutions in a weak
sense, then the proof of the proposition can be inductively achieved
by the same method. Let us study the case n = 1. In this case there
exists an element & of M such that

6(&) e=0.
dr

Hence we have

As ypy(d/de) = (6(61/0?99))1’ is Og-linear, we see that yy is zero.

In general, it is known. that the p-curvature is zero if and only
if the differential equation has » independent solutions (N. Katz).

From the above proof we can see that, in the definition 2 of § 2,
if the new differential equation with respect to « has sufficiently many
solutions in a weak sense for a solution y, € k[2], then, for any other
solution, the new differential equation has also sufficiently many solu-
tions in a weak sense.

Now, in his paper, Katz defines regular singular points in charac-
teristic zero. But his definition is essentially equivalent to that of
our paper. For a Fuchsian type connection V, its indicial equation
depends on the differential equation associated with V. But the
exponents are invariant modulo Z. Therefore, it is meaningful to
say that the exponents are rational. In such case V is said to be
quast-unipotent.

1f we take § = Spec Z[z],, we can consider the reduction modulo p.
If a connection V is nilpotent for any reduction modulo p, then V is
said to be globally nilpotent. Katz showed that if V is globally nil-
potent, then V is of Fuchsian type and quasi-unipotent (which is
confirmed in the corollary to Theorem 2 of §2 in our paper).

Tor a more general S the reader should consult the original paper.
In addition to the above results, it is shown in that paper that a
Gauss-Manin connection is globally nilpotent.

Testo pervenuto il 9 aprile 1979.

Bozze licenziate il 4 marzo 1980.
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SUR LES BORDS D’ENSEMBLES
ANALYTIQUES COMPLEXES DANS P(C) (*)

JACQUES BESNAULT - PIERRE DOLBEAULT

i. Introduction.

1.1. Soit © un ouvert relativement compact de C” dont le bord
bQ est une sous-variété différentiable connexe. On donne une fonc-
tion f CR (Cauchy-Riemann) sur b2, le théoréme de Bochner [2],
[9], [4] assure Vexistence d’une fonction F différentiable sur £, holo-
morphe dans Q telle que F|,, = f. Considérons les graphes orientés M
de f et V de F|p dans C*XC: M est une sous-variété maximalement
complexe de C+, de dimension 2n —1; V est un sous-ensemble ana-
lytique complexe de dimension # de CrN M5 V définit un courant
Q’intégration [V] dont I'extension simple a pour différentielle le cou-
rant d’intégration [M] sur M. Le théoreme de Bochner affirme
done Pexistence d'un ensemble analytique complexe de bord compact
donné M.

1.2. Dans la suite on désigne par [ ] le courant d’intégration.

On appelle p-chaine holomorphe d’une variété analytique com-
plexe Z, de dimension n, un courant 7' = > n,[V,;] ol V; désigne un

3
ensemble analytique complexe irréductible de Z et ou les n; sont des
entiers.

1.3. Soit M une sous-variété réelle, orientée, compacte de classe €,
de dimension (2p —1) d’une variété analytique complexe X de dimen-
sion n. il existe une chaine holomorphe T de Z = X\ A, de dimen-
sion p, dont 1'extension simple (notée encore T) a X est telle que
dT = [M], on dira que M est le bord de 7, en particulier si les n;

(*) I risultati conseguiti in questo lavoro sono stati esposti da P. Dolbeault
nella conferenza tenuta 1’11 aprile 1979.




